The use of PEEK nanorod arrays for the fabrication of nanoporous surfaces under high temperature: SiNx example.

نویسندگان

  • Jaime Martín
  • Marisol Martín-González
چکیده

Large area silicon nitride (SiN(x)) nanoporous surfaces are fabricated using poly(ether-ether-ketone) (PEEK) nanorod arrays as a template. The procedure involves manipulation of nanoporous anodic aluminum oxide (AAO) templates in order to form an ordered array of PEEK nanopillars with high temperature resistant characteristics. In this context, self-ordered AAO templates are infiltrated with PEEK melts via the "precursor film" method. Once the melts have been crystallized in the porous structure of AAO, the basis alumina layer is removed, yielding an ordered array of PEEK nanopillars. The resulting structure is a high temperature and chemical resistant polymeric nanomold, which can be utilized in the synthesis of nanoporous materials under aggressive conditions. Such conditions are high temperatures (up to 320 °C), vacuum, or extreme pH. For example, SiN(x) nanopore arrays have been grown by plasma enhanced chemical vapor deposition at 300 °C, which can be of interest as mold for nanoimprint lithography, due to its hardness and low surface energy. The SiN(x) nanopore array portrays the same characteristics as the original AAO template: 120 nm diameter pores and an interpore distance of 430 nm. Furthermore, the aspect ratio of the SiN(x) nanopores can be tuned by selecting an AAO template with appropriate conditions. The use of PEEK as a nanotemplate extends the applicability of polymeric nanopatterns into a temperature regime up to now not accessible and opens up the simple fabrication of novel nanoporous inorganic surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on ZnO Nanorod Arrays Formed on the Surface of Polyester Fabric

A feasibility study on the possible growth of rod-shaped nano size zinc oxide particles on the surface of polyester fabric was investigated. The nanoparticles were produced using a hydrolysis method, with a zinc compound being utilized as the starter material. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) and X-ray d...

متن کامل

Fabrication of Nanoporous Functionalized Hydroxyapatite as High Performance Adsorbent for Acid Blue 25 Dye Removal

In this study, nanoporous hydroxyapatite was synthesized and functionalized via tetraethylenepentamine in order to obtain a novel adsorbent for efficient removal of Acid Blue 25 dye from aqueous solution. Functionalized hydroxyapatite was characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (...

متن کامل

نانومیله‌های نانوبرگ‌دار شده دی‌اکسید تیتانیم دوفازی به‌منظور استفاده در کاربردهای فتوالکتروشیمیایی

Rutile-phase titanium dioxide nanorod arrays were prepared by the hydrothermal method. Then, anatase-phase nanoleaves were successfully synthesized on the nanorod arrays via mild aqueous chemistry. Nanorod arrays scanning electron microscopy revealed that the thin film is uniform and crack free and the average diameter and height of the nanorods are 90 nm and 2 µm, respectively. Furthermo...

متن کامل

Fast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate

Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...

متن کامل

Ordered nanoporous carbon (CMK-3) coated fiber for solid-phase microextraction of benzene and chlorobenzenes in water samples

Nanoporous carbons (CMK-3) were prepared and have been used as a fiber coating for headspace solid phase microextraction (HS-SPME). The prepared materials were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and N2 adsorption/desorption isotherms. The efficiency of the fiber was evaluated using a gas chromatography (GC) system for the extraction of benzene (B) and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 18  شماره 

صفحات  -

تاریخ انتشار 2012